ماشین های تراش که ابتدائی ترین نوع ماشینهای افزار بشمار می روند تاریخچه آن بین قرن ۱۷و۱۸ شروع شده که در ابتدا معمولی ترین و یا قدیمی ترین روش تراش تراشیدن چوب بوسیله درخت است . بدین معنی که دو سر چوب را بین دو درخت قرار داده و یک طناب به شاخه درخت بسته و انرا حول چوب مورد نظر پیچیده و طرف دیگر طناب را شخص دیگری گرفته و با دست طناب را به حرکت در خواهد آورد. شخص دومی که در طرف مقابل قرار گرفته با رنده چوب را می تراشد . این روش قدیمی ترین روش تراش بوده که بعد از مدتی تکامل پیدا کرد.
اولین ماشین تراش در سال ۱۷۴۰ در فرانسه ساخته شد . در این ماشین وسیله چرخش محور اصلی بوسیله ی دست خواهد بود که دسته گرداننده محور آن مستقیما روی پیش دستگاه که به محور اصلی متصل است توسط دو چرخ دنده ساده به میله پیچ بری متصل می باشد قرار گرفته است . در این نوع ماشین برای تعویض چرخ دنده های متفاوت جهت پیچ تراشی پیچهای مختلف پیش بینی شده است .
در سال ۱۷۹۶ یک نفر انگلیسی بنام Freeland برای اولین مرتبه ماشین تراشی ساخت که دارای میله پیچ بری بود با عوض کردن چرخ دنده های روی محور اصلی و محور پیچ بری می توان پیچ های مختلف را ساخت.
در سال های ۱۸۰۰و۱۸۳۰ در ایالات متحده امریکا ماشین های تراشی ساخته شد که با بدنه چوبی و پایه آهنی مجهز بود. در سال۱۸۳۶ شخصی بنام Patnon در ماساچوست آمریکا ماشین تراشی با میله پیچ بری ساخت.در سال۱۸۵۰ماشین تراشی با بدنه آهنی توسط Newhaven Cannectionساخته شد ودر سال ۱۸۵۳شخصی بنام Freelandدر نیویورک ماشین تراشی با ریلهائی بطول ۲۰فوت که کارهایی به قطر ۱۰اینچ
را می توانست بتراشد ساخت و بدنه آهنی و در درشت آنجایگاه چرخ دنده های تعویضی بود.
بعد ها ماشین تراش مدرن تری ساخته شدهکه می توان با آنها پیچ های مختلفی را تراشیدو نیز بار های طولی و عرضی بوسیله یک چرخ دنده هائیکه در روی دستگاه سوپرت طولی وعرضی قراردادبصورت خودکارانجام گیردهمچنین طریقه تعویض چرخ دنده هادر قسمت پیش دستگاه نشان داده شده است . ولی در سال های بعد این ماشین تکمیل تر شده وپایه ای که بخود ماشین متصل شده بود ساخته شد. بعد از مدتی ماشین های بهتری از نظر قدرت و دورهای بیشتر ساخته شد که بنام ماشین های تراش جعبه دندهای معروف است . این ماشین دارای جعبه دنده دور و نیزجعبه بار می باشد که باسانی میتوان ماشین را خودکار نمود و کارهای مختلف را تراشید .
اگرچنانکه ماشین تراش ساخت ماندسلی را با ماشین های دقیق امروزه مقایسه کنیم متوجه
خواهیم شد که ماشین تراش ماندسلی نسبت به ماشین های دیگر بد شکل و ناخوش آیندبودناگفته نماندکه ماشین تراش ساخت ماندسلی مقدمهساختن ماشین های ابزارسازی بهدی قرارگرفت .
امروزه با وجود اینکه بیش از ۱۷۸ سال از اختراع ماشین تراش ماندسلی می گذرد هنوزماشین تراش هسته مرکزیصنایع امروزی را تشکیل می دهد . همچنین ناگفته نماند که ماشین تراش را بحق سلطان ماشین ها باید نامید زیرا که با آنها کارهائی که ماشین های دیگر مجموعاازانجامش عاجزند میتوان انجام داد.
laser tracking چیست؟
laser tracking چیست و در چه نوع اندازه گیری هایی قابل استفاده می باشد؟
این نوع دستگاه یکی از ابزارهای جدید اندازه گیری است که بر اساس قابلیت منحصر به فرد لیزر(همدوس بودن و حفظ همگرایی تا فواصل طولانی)، طراحی و انواعی از آن نیز به بازار آمده اند. این دستگاه ها عمدتاً برای اندازه گیری قطعات بزرگ و مخصوصاً هنگام Set Up کردن یا تنظیم موقعیت آنها هنگام مونتاژ مورد استفاده قرار می گیرند. به این صورت که یک کله گی لیزر (عموماً لیزر نئون) در موقعیتی ثابت تنظیم شده و یک رفلکتور که انعکاس دهنده نور لیزر به کله گی می باشد بر روی قسمت های مختلف قطعه مورد نظر قرار داده شده و موقعیت سه بعدی آنها نسبت به کله گی لیزر با دقت بالا اندازه گیری می شود. با محاسبات نرم افزاری که عمدتاً این دستگاه ها مجهز به آن هستند موقعیت نسبی بخش های مختلف یک مجموعه بزرگ قابل اندازه گیری خواهد بود.
امواج اولتراسونیکامواج اولتراسونیک به دسته¬ایی از امواج مکانیکی گفته می¬شود که فرکانس نوسانشان بیش از محدوده شنوایی انسان (۲۰Hz-۲۰KHz) باشد. این امواج بدلیل خواصی که دارند کاربردهای متنوع و بعضاً جالبی دارند. با محاسبه¬ایی ساده می¬توان دریافت که اگر نقطه¬ایی با فرکانس ۲۵ کیلوهرتز و دامنه ۱۰ میکرومتر نوسان کند شتاب آن بالغ بر ۲۵ هزار برابر شتاب ثقل می¬شود. این شتاب و به طبع آن سرعت بالا در مایعات باعث ایجاد کاویتاسیون می¬شود و در هنگام انفجار حبابهای ایجاد شده فشاری در حدود ۲۰۰ بار ایجاد می¬گردد. ا
ز طرف دیگر اگر حرکت نسبی با مشخصات فوق میان دو سطح جامد برقرار شود ازدیاد دما باعث جوش خوردن دو سطح به یکدیگر می¬شود که Ultrasonic Welding می¬باشد. امواج اولتراسونیک مانند دیگر امواج دارای خاصیت شکست، انعکاس، نفوذ و پراش می¬باشند. برای تولید این امواج روشهای متفاوتی وجود دارد. مجموعه¬های اولتراسونیک معمولاً از سه بخش کلی تشکیل می¬شوند: ۱_ مبدل ۲_ بوستر ۳_ تقویت کننده یا هورن. مبدل نقش تولید امواج مکانیکی و تبدیل انرژی الکتریکی به مکانیکی را دارد, بوستر و تقویت کننده نیز وظیفه انتقال و تقویت دامنه حرکت و رساندن آن به مصرف کننده را به عهده دارند.
آینده شغلی این رشتهآیندهی شغلی مهندسی مکانیک چشمانداز شغلی مهندسان مکانیک، امیدبخش و بااستحکام است. برای مثال، در ایالات متحدهی آمریکا، رشد شغلها و حرفههای مربوط به مهندسی مکانیک، هر سال حدود ۱۶٪ (۳۵ هزار شغل) میباشد و انتظار میرود این آهنگ رشد تا سال ۲۰۰۶ میلادی حفظ شود. مهندسان مکانیک از روزگاران گذشته تا به امروز، اغلب در بخشهای صنعتی زیر نقش عمدهای ایفا میکنند: هوا فضا، خودروسازی، واحدهای
شیمیایی، رایانه و الکترونیک، ساختمانسازی، انواع فرآوردههای مصرفی، انرژی، مشاورهی مهندسی و بخشهای دولتی. همچنین صنعت پزشکی و داروسازی، فرصتهای شغلی هیجانانگیزی را برای مهندسان مکانیک به وجود آوردهاند تا نیروها و دانشهای زیستی را در هم بیامیزند.
مباحث اساسی در مهندسی مکانیکمباحث اساسی در مهندسی مکانیک مبحثها و موضوعهای اساسی مهندسی مکانیک عبارتاند از: ایستاییشناسی (استاتیک)، پویاییشناسی (دینامیک)، مکانیک مادّهها (مقاومت مصالح)، ترمودینامیک مهندسی، مکانیک شارهها (مکانیک سیّالات)، انتقال گرما (انتقال حرارت)، نظریهی کنترل، شارهشناسی (هیدرولیک)، گازشناسی (پنوماتیک)، مکاترونیک. همچنین انتظار میرود یک مهندس مکانیک بتواند مفاهیم اساسی شیمی و مهندسی برق را درک کرده و در طراحی به کار بندد.
ماشین کاری سریع (High Speed Machining) ماشین کاری سریع چیست؟
هنوز سؤالات و اشکالات و تعریفهای متناقض زیادی پیرامون این موضوع وجود دارد. در ادامه، این سؤالات پاسخ دهی شده و به طریقی که به حذف فضای نامفهوم ایجاد شده پیرامون ماشین کاری سریع کمک کند، مورد بحث قرار گرفته اند.
پس زمینه تاریخی
عبارت ماشین کاری سریع (HSM)، عموماً به فرزکاری انگشتی با سرعت دورانی بالا و پیشروی سریع بر می گردد؛ به عنوان نمونه، پاکت تراشی در بدنه آلومینیومی هواپیماهابا نرخ براده برداری بالا. در طی ۶۰ سال گذشته، ماشین کاری سریع در مورد گستره وسیعی از تولید قطعات فلزی و غیر فلزی با وضعیت سطحی خاص در ماشین کاری مواد با سختی ۵۰ HRC و بالاتر اعمال گردیده است.
برای بیشتر قطعات فولادی که تا حدود ۳۲-۴۲ HRC سخت شده اند، گزینه های ماشین کاری عبارتند از:
ماشین کاری خشن و نیمه پرداختی در شرایطی که هنوز سخت نشده اند (آنیل)
عملیات حرارتی برای دست یابی به سختی نهایی (در حدود ۶۳ HRC)
ماشین کاری الکترودها و اسپارک قطعات خاص قالبها (خصوصاً گوشه ها با شعاعهای کوچک و حفره های عمیق با دسترسی محدود برای ابزارهای برشی)
پرداخت و فوق پرداخت سطوح استوانه ای، تخت و حفره ها توسط کاربید سمانته مناسب، Cermet (نوعی آلیاژ سرامیک و فلز)، کاربید سرامیک مخلوط شده یا نیترید بورون مکعبی چند کریستالی (PCBN).
در مورد خیلی از قطعات و اجزاء، فرآیند تولید شامل آمیزه ای از این گزینه ها بوده و در مورد قالبها باید پرداخت کاری دستی -که زمان بر است- را نیز اضافه نمود. در نتیجه، هزینه های تولید بالا رفته و زمان تدارک (Lead time) بیش از اندازه طولانی خواهد شد.
یکی از اهداف و مقاصد صنایع قالب سازی این بوده و هست که نیاز به پولیش زدن دستی را کاهش داده و یا حذف نمایند و متعاقباً کیفیت را بهبود بخشیده و هزینه های تولید و زمان تدارک را کاهش دهند.
فاکتورهای اقتصادی و فنی اصلی برای پیشرفت ماشین کاری سریع
بقا – همیشه افزایش رقابت در بازارهای فروش کالا با تهیه استانداردهای جدید همراه است. نیاز به بهره وری در زمان و هزینه روز به روز بیشتر و بیشتر می شود. این موضوع سبب می شود تا پروسه ها و فناوریهای تولیدی نوینی شکل بگیرد. ماشین کاری سریع، امید بخش و ارائه دهنده راه حلهای جدید است… .
مواد – پیشرفت مواد جدیدی که ماشین کاری آنها مشکل است، بر نیاز به یافتن راه حلهای جدید ماشین کاری تأکید می نماید. صنایع فضایی، آلیاژهای فولادی ضد زنگ و مقاوم به حرارت مخصوص به خود را داراست. صنایع اتومبیل سازی، کامپوزیتهای دو فلزی، آهن فریتی و حجم رو به رشد آلومینیوم را داراست. صنعت قالبسازی اساساً با مشکل ماشین کاری فولادهای ابزاری سخت
شده از مرحله خشن کاری تا پرداخت کاری روبه روست.
کیفیت – نیاز به قطعات و اجزاء محصولاتی با کیفیت بالاتر، نتیجه رقابتهای رو به افزایش است. چنانچه ماشین کاری سریع درست به کار گرفته شود، راه حلهای زیادی در این زمینه ارائه می دهد. یک نمونه جایگزین کردن پرداخت کاری دستی با ماشین کاری سریع است که خصوصاً در قالبها و یا قطعات با هندسه سه بعدی پیچیده از اهمیت بالایی برخوردار است.
فرایندها – نیاز به زمان بازده کوتاهتر از طریق کاهش تعداد باز و بست کردنها و روشهای ساده تر، در خیلی از موارد می تواند توسط ماشین کاری سریع برآورده شود. یک هدف نوعی در صنعت قالب سازی این است که ابزارهای سخت شده کوچک در یک set-up ماشین کاری شوند. فرایندهای پر هزینه و زمان بر EDM را نیز می توان توسط ماشین کاری سریع کاهش داده و یا حذف نمود.
طراحی و پیشرفت – امروزه یکی از ابزارهای اصلی برای رقابت، فروش محصولات تازه و نوظهور می باشد. در حال حاضر عمر متوسط قطعات خودروها در حدود ۴ سال، قطعات کامپیوترها و خدمات جانبی آن ۱٫۵ سال، و عمر گوشیهای تلفن، ۳ ماه و … است. یکی از شرایط لازم برای چنین پیشرفت در تغییر سریع طرحها و محصولات و کاهش زمان عرضه آنها استفاده از تکنیکهای ماشین کاری سریع است.
محصولات پیچیده – استفاده از سطوح چند کاره (multi-functional surfaces) بر روی قطعات در حال افزایش هستند، همچون طرحهای جدید پره های توربین که قابلیت ها و تواناییهای جدید و بهینه ای بدست می دهد. طرحهای قبلی اجازه می دانند که پره ها را توسط دست یا با روبات پولیش زنی نمود، اما پره های جدیدی که بسیار پیچیده تر شده اند، می بایستی از طریق ماشین کاری و
ترجیحاً ماشین کاری سریع، پرداخت شوند. در این مورد نمونه های خیلی بیشتری از قطعات با دیواره نازک که می بایستی ماشین کاری شوند، موجود است. (تجهیزات پزشکی، الکترونیک، محصولات دفاعی و اجزاء کامپیوترها)
اولین تعریف از ماشین کاری سریع:
در تئوری Salomon، ماشین کاری با سرعت برشی بالا… فرض می شود که در سرعتهای برشی خاص (۵ تا ۱۰ مرتبه بزرگتر نسبت به ماشین کاری معمولی)، دمای براده برداری در لبه برشی شروع به کاهش می نماید… .
در نتیجه … به نظر می رسد که شانسی برای بهبود تولید در ماشین کاری با ابزارهای معمولی در سرعتهای برشی بالا بدست دهد… .
تحقیقات نوین، متأسفانه نتوانسته است این تئوری را به طور امل تأیید نماید. کاهش نسبی دما در لبه برنده برای مواد مختلف، در سرعتهای برشی خاص رخ می دهد. این کاهش دما برای فولاد و چدن کوچک بوده و برای آلومینیوم و دیگر فلزات غیر فرو بزرگتر می باشد.
به عنوان یک تعریف منطقی از ماشین کاری سریع می توان گفت: ماشین کاری در سرعتهای به طور مشخص بالاتر نسبت به سرعتهای معمول مورد استفاده در کارگاهها. این سرعت به عوامل زیر بستگی دارد:
۱٫ ماده ای که می بایستی ماشین کاری شود – به عنوان مثال: آلیاژهای آلومینیوم، سوپر آلیاژهای نیکل، فولادها، آلیاژهای تیتانیوم، چدن یا کامپوزیتها
۲٫ نوع فرایند ماشین کاری – برای مثال: تراشکاری، فرزکاری یا سوراخکاری
۳٫ ماشین ابزار مورد استفاده – برای مثال: قابلیت های توانی، سرعت، پیشروی ماشین؛ دیگر مشخصات ماشین ابزار همچون پایداری استاتیکی و دینامیکی
۴٫ ابزار برشی مورد استفاده – به عنوان نمونه: فولاد تند بر، ابزار کاربیدی، سرامیکی یا الماسه
۵٫ ملزومات قطعه کار – شکل، سایز، هندسه، سفتی، دقت و پرداخت
۶٫ ملاحظات دیگر – دسترسی به براده، ایمنی و اقتصاد
تعریفهای عملی از ماشین کاری سریع:
• ماشین کاری با سرعت بالا در حقیقت تنها سرعت برشی بالا نیست. این موضوع را می بایستی به عنوان فرایندی که در آن عملیات با روشهای بسیار خاص و با تجهیزات تولیدی بسیار دقیق انجام می گیرد، در نظر گرفت.
• ماشین کاری با سرعت بالا، لزوماً ماشین کاری با اسپیدلهای با سرعت بالا نمی با
شد. خیلی از کاربردهای ماشین کاری سریع با اسپیندلهایی با سرعتهای متوسط و با ابزارهای بزرگ انجام می گیرد.
• ماشین کاری سریع در پرداخت کاری فولادهای سخت شده در سرعتها و پیشرویهای بالا، اغلب ۴-۶ برابر سریعتر نسبت به ماشین کاری معمولی انجام می پذیرد.
مزایای استفاده از ماشین کاری سریع:
• حداقل فرسایش ابزار حتی در سرعتهای بالا
• فرایندی با قابلیت تولید بالا برای قطعات کوچک
• کاهش تعداد مراحل فرایند
در این نوع ماشین کاری دمای قطعه کار و ابزار پایین نگه داشته می شود که باعث می شود در خیلی از موارد عمر ابزار طولانی تر شود. از طرف دیگر در ماشین کاری سریع، عمق ماشین کاری کم بوده و زمان درگیری برای لبه برنده بسیار کوتاه است. (در تصویر زیر به وضوح تفاوت میان ماشین کاری معمولی و ماشین کاری سریع از لحاط حرارت ایجاد شده و منطقه حرارت دیده ابزار در هر دو روش آشکار است.) بنابراین می توان گفت که سرعت پیشروی به اندازه کافی بالا هست که
حرارت نتواند گسترش پیدا کند. نیروی برشی کوچک باعث تغییر شکلهای جزئی در ابزار می شود. از آن جایی که نوعاً در این نوع ماشین کاری، عمق برش کم است، نیروهای برشی شعاعی بر روی ابزار و اسپیندل کوچک است. لذا یاتاقانهای اسپیندل، ریلهای راهنما و ballscrewها حفظ می شوند.
برخی معایب استفاده از ماشین کاری سریع:
• نرخ سریغ افزایش و کاهش سرعت و توقف های مکرر اسپیندل باعث می شود که راهنماها، یاتاقانهای اسپیندل و ballscrewها سریعتر فرسوده شوند.
• نیاز به دانش خاص فرایند، تجهیزات برنامه نویسی و رابطی برای انتقال سریع داده ها
• توقف اورژانسی عملاً لازم نیست. خطاهای انسانی، خطاهای سخت افزاری یا نرم افزاری، پیامدهای بزرگی به همراه خواهد داشت.
• نیاز به طراحی خوب فرایند.
ابزارها
در بیشتر کاربردها ابزارهای کاربیدی مورد نیاز است. خمواره باید در این نوع ماشین کاری از گریدی از ابزارهای کاربیدی استفاده کرد که علاوه بر سختی (مقاومت در برابر سایش)، دارای چقرمگی (مقاومت در برابر شوک و ضربه) نیز باشد؛ چرا که ماشین کاری سریع اغلب با شوکهای زیادی همراه است. ضربه، ارتعاشات و تغییرات دمایی، همگی در سرعتهای بالاتر، شرایط بحرانی تری دارند. در مورد ابزارهای با چقرمگی بالاتر، احتمال لب پر شدن یا ترک خوردن به علت این شوکها کمتر می باشد.
بهترین حالت از نظر سختی و چقرمگی، در ابزارهاب کاربیدی با دانه بندی ریز بدست می آید. بسیاری از کاربیدهای ریزدانه ای که امروزه موجود هستند، چقرمگی بهتر، و تغییرات سختی کمتری نسبت به گریدهای درشت تر از خود نشان می دهند.
ماشین کاری سریع اغلب ماشین کاری در درجه حرارت بالا نیز هست. انتخاب ابزار نه تنها بر اساس مقاومت سایشی، بلکه می بایستی بر اساس قابلیت حفظ مقاومت سایشی در دماهای بالا نیز انجام پذیرد.
معمولا در ماشین کاری سریع از ابزارهای کاربیدی با پوشش TiAlN استفاده می شود؛ چرا که این پوشش با ایجاد یک سد حرارتی از ابزار محافظت می کند. این پوشش در حدود ۳۵% نسبت به TiN به لحاظ حرارتی مقاومتر است. خاصیت دیگر TiAlN مقاومت سایشی است که سبب شده در ماشین کاری قطعات ریخته گری شده مؤثر باشد. از آنجایی که این پوشش در ماشین کاری در دمای بالا مؤثر است، اغلب به منظور کاهش شوک از خنک کار استفاده نمی شود. به منظور جایگزینی خاصیت روانکاری خنک کار، لایه ای از پوشش روانکار بر روی TiAlN استفاده می شود.
در مقایسه با کاربیدها موادی که در جدول زیر لیست شده اند، مقاومت سایشی بالاتری در سرعتهای برشی بالاتر از خود نشان می دهند، اما در برابر شوکها ضعیف تر می باشند. در یک فرایند پایدار، استفاده از یکی از موارد زیر می تواند طول عمر بیشتری نسبت به ابزاراهای کاربیدی بدست دهد.
فلزات غیر فرو فلزات فرو
PCD CBN
Cermet سرامیک
موضوعات مرتبط
در مورد ماشین کاری آلیاژهایی با قابلیت ماشین کاری پایین از جمله آلیاژهای تیتانیوم و سوپر آلیاژهای نیکل، ترجیح داده می شود که به جای ماشین کاری سریع از ماشینکاری با توان عملیاتی بالا (High-Througput Machining) استفاده نمود چرا که به مدرت این فلزات بتوانند در سرعتهای بالاتر از ۳۰۰ smm ماشین کاری شوند. عبارتی که اغلب برای پوشش دادن به هر دو مبحث HSM و HTM به کاری می رود، ماشین کاری با راندمان بالا (High Efficiency Machining) می باشد. به عبارت دیگرHEM به معنای بار برداری با نرخی سریعتر نسبت به کاربردهای معمولی می باشد.
ماشینکاری پرههای توربین ساخت پرههای توربین به دلیل بارهای مکانیکی و دینامیکی زیادی که بر آنها وارد میشود از اهمیت زیادی برخوردار است. نواحی مختلف پره شامل شرود و مناطق آب بندی، ایرفویل، شاتک و سوراخهای خنک کاری و ریشه میشود. که هر منطقه بسته به جنس پره و نوع استفاده پره (صنایع هوایی یا سایر صنایع، کمپرسور یا توربین) به روشهای مختلف ساخته می شود. در حالت کلی برای ساخت پره توربین یا کمپرسور ابتدا ماده خام را به یکی از روشهای آهنگری یا ریختهگری دقیق به شکل اولیه موردنظر در میآورند. سپس برای اینکه قسمتهای مختلف پره را به اندازه نهایی برسانند از روشهای مختلف ماشینکاری استفاده میکنند. دقیقترین قسمت پره به لحاظ ابعادی، قسمت ریشه آن میباشد که معمولاً از روش سنگزنی خزشی برای ماشینکاری آن استفاده میشود. به طور کلی ساخت پرههای متحرک موتورهای توربین گازی با توجه به شکل پیچیده و شرایط کاری حاد از تکنولوژی بالایی برخوردار است. در این میان ریشه پره با توجه به نیروهایی که به آن وارد میشود نسبت به بقیه قسمتهای پره دارای کیفیت سطح و دقت ابعادی بالایی میباشد. تاکنون کیفیت سطح نامناسب مانع از بکارگیری روش تخلیه الکتریکی
(وایرکات) برای ماشینکاری ریشه پره میشد. اما اخیراً با توجه به پیشرفتهای به وجود آمده در مولد ماشینهای وایرکات، استفاده از این روش برای ماشین کاری ریشه پره مورد توجه قرار گرفته است. معمولاً برای ساخت ریشه پره توربین،از روش سنگزنی خزشی و قسمت کمپرسور از روش خانکشی استفاده میشود اما اخیراً در خارج از کشور ساخت ریشه پره با روش تخلیه الکتریکی مورد توجه قرار گرفته است. یکی از عواملی که تاکنون مانع از استفاده این روش برای ماشینکاری
ریشه پره میشد، کیفیت سطح نامناسب با توجه به حرارتی بودن این روش است. اما اخیراً با توجه به پیشرفتهایی که در مولد این ماشینها بوجود آمده است استفاده از آن را برای ماشینکاری ریشه پره امکانپذیر ساخته است. برای ماشینکاری ریشه پره کمپرسور که از جنس فولاد زنگ نزن است معمولاً از روش خانکشی استفاده میشود از مزایای این روش یک سرعت بالا، دقت فرمها و سطوح تولید شده به وسیله خانکشی در حد مطلوب و عمر ابزار طولانی و قابلیت و سهولت در ایجاد پروفیلهای نامنظم بدون نیاز به اپراتور ماهر میباشد.
بررسی اثر پودرهای مختلف افزوده شده به دی الکتریک بر روی پارامترهای ماشین کاری تخلیه الکتریکی (EDM)در ماشینکاری تخلیه الکتریکی یکی از مشکلات موجود افزایش زبری سطح ماشینکاری شده با افزایش جریان و پائین بودن نرخ براده برداری(MRR) در مقایسه با سایر روشهای ماشینکاری پیشرفته و سنتی می باشد. یکی از روشهای بهبود این وضعیت افزودن پودر فلزات و اکسید آنها به دی الکتریک است. در این مقاله با افزودن پودرهای مس (CU)، اکسید آلومینیم
(AL2O3) سیلیسیم کارباید(SiC) در مخزن طراحی شده حاوی دی الکتریک به بررسی پارامترهای MRR ، صافی سطح، فاصله گپ پرداخته و دو حالت بدون پودر و با پودر با یکدیگر مقایسه شده است. نتایج تحقیق نشان میدهد که افزودن پودرها به دی الکتریک سبب بهبود صافی سطح میگردد و میتوان با جریانهای الکتریکی بالاتر که سبب افزایش نرخ براده برداری میگردند صافی سطح را در حد مورد نظر نگه داشت که در حالت بدون پودر امکان پذیر نمیباشد.
سیستم تراشکاری Valenite سه اینسرت با هندسه جدید اضافه می نماید.
شرکت Valeniteبار دیگر سیستم تراشکاری ValTURNTM خود را با اضافه کردن ۳ هندسهجدید به خط اینسرتهای تراشکاری خود گسترش داده است. هندسه های جدید با گریدهای ابزاری پوشش یافته موجود MTCVD یعنی: VP5515 و VP5525 ترکیبب شده است، تا گستره کاربردهای ۳ ابزار ValTURN را که به طور خاص برای بارهای برشی متوسط و برش پیوسته و منقطع، برای کاربردهای خشن تراشی با بار زیاد، و برای فرایند پرداخت کاری با عمق کم در فولادهای کم کربن و مواد نرم طراحی شده اند، گسترش دهد. تستهای آزمایشگاهی نشان داده است که ترکیب هندسه ها و گریدها، کنترل براده و عملکرد برشی عالی برای ماشین کاری مواد آهنی فراهم می نماید.
هر سه هندسه جدید ار نوع منفی ANSI (ANSI Negative type geometry) بوده و اینسرتها دو طرفه می باشند. آرایه انتخاب با اشکال، ضخامتها، دایره های محاطی، شعاع گوشه و … مختلف اینسرت بیشتر افزایش یافته که منجر به ۹۸ نمونه جدید و ۹۸ گزینه عملکردی خاص برای گستره
وسیعی از فرایندها شده است. هندسه ای جدید عبارتند از:
طرح M8- این هندسه دارای عرش (land) خنثایی است تا لبه برنده بسیار مقاومی در کاربردهای ماشینکاری متوسط ایجاد نماید. اینسرتهای با این هندسه می توانند هم در برشهای پیوسته و هم در برشهای منقطع به کار گرفته شوند و برای فولادها، فولادهای ضد زنگ و چدنها مناسب می باشند.
طرح R4- این هندسه در اینسرتهای مخصوص کار سنگین با عرش خنثای وسیع به کار گرفته شده تا لبه برنده بسیار مقاومی برای کاربردهای خشن تراشی فولادها و چدنها فراهم نماید. این طرح برای برشهای پیوسته یا منقطع مناسب بوده و برای گستره وسیعی از کاربردها ایده آل است.
طرح C2- دارای هندسه خاصی است که شامل عرش مثبتی است که کنترل براده در عمق برشی کم را قطعی می سازد. هندسه C2 برای فولادهای کم کربن و مواد نرم، ایده آل بوده و کنترل عالی روی پرداخت سطح بدست می دهد.
نام گذاری الفبایی-عددی فهرست اصطلاحات هندسه منفی ANSI شرکت Valenite نشانگر نوع فرایند است، به عبارت دیگر؛ F نشانگر پرداخت کاری، M نشانگر ماشین کاری در سطح متوسط، R نشان دهنده خشن کاری و C نشانگر تکمیلی (complementary) می باشد. ارقام از ۱ تا ۹ مقاومت نسبی لبه برنده را تعیین می کند، که رقم ۹ نشان دهنده بالاترین مقاومت و بیشترین نرخ پیشروی می باشد.
گریدهای ابزاری VP5515 و VP5525 ، هر دو کاربیدهای پوشش یافته پروسه MTCVD با TiCN/Al2O3/TiN میباشند. زمینه اصلی از کبالت غنی شده تا در مقابل کند شده لبه مقاوم بوده و اینسرتدارای لبه ای برنده سنگ خورده ای است که از ایجاد لبه انباشته جلوگیری می کند.
مجموعه سیستم تراشکاری ValTURN شامل آرایه وسیعی از اینسرتها برای فولاد، فولاد ضد زنگ، چدن، آلیاژهای دمابالا، آلومینیوم و آلیاژهای غیر آهنی، و کاربردهای تراشکاری قطعات سخت، به اضافه ابزارگیرهای ValTURN ProGRIP™ می باشد که پایداری، دقت و قابلیت تطبیق پذیری با فرمتهای استفاده آسان را فراهم می نماید.
شرکت Valenite فعالیتهای خود را ادامه می دهد تا در سال ۲۰۰۵ گریدها و هندسه های جدیدی ارائه نماید تا پوشش بازاری خود را به بیش از ۹۰% از کاربردها گسترش دهد.
همانند تمامی محصولات Valenite ، ابزارهای سیستم تراشکاری Valenite با سرویس سطح بالای ValPro™ برای مشتریان به منظور سفارش دادن، قیمت گیری و زمان بندی تحویل حمایت می شود. علاوه بر آن یک هیئت فنی به طور مستمر محصولات به روز شده و اطلاعات کاربردی، و پیشنهاد برای بهینه سازی بهره وری برش فلزات را ارائه می نماید.
اشعه مادون قرمز مشکلات اتصال پلاستیک ها را حل کرده استماشین های جدید جوش مادون قرمز Tamworth-based CPR Automation اکنون برای جوشکاری پلاستیک ها آماده اند .
تولید کنندگان که به طور سنتی از صفحات داغ برای جوش دادن پلاستیک ها استفاده می کردند اکنون با استفاده از جوش مادون قرمز به قابلیت های جدید تولیدی از قبیل جوش چند نقطه در یک مرحله جوشکاری ودرنتیجه افزایش میزان تولید دست می یابند. از این روش در صنایعی مثل صنعت قالبگیری پلاستیکها ، تولیدکنندگان مواد پر کننده پلاستیکی ، صنعت بسته بندی و حتی در دستگاههای جوش خانگی استفاده نمود .
جوش مادون قرمز بسیار تمیز است و با آن امکان جوش یک درز جوش طولانی را خواهید داشت . از مزایای دیگر سیستم های CPR نسبت به روش صفحات داغ ایجاد یک جوش یکنواخت به خاط توزیع یکنواخت حرارت در جوش است و همچنین شما می توانید به منظور محافظت از جوش از یک گاز محافظ نیز استفاده کنید . کنترل پیشرفته CPR به شما اجازه کنترل و مونیتورینگ جوش مادون قرمز را میدهد . سیستم می تواند داده های بسیار زیاد فرآیند مانند دما جوش ، شکل جوش و … را نشان دهد و در خود ذخیره کند .همچنین سیستم مجهز به AMC ( Automatic Melt Control ) برای کنترل دقیق دما و ذوب است
روش نوین برای آج زنی فک گیرهروش نوینی برای ایجاد آجهای قوسی شکل بر روی فک گیره های صنعتی
با استفاده از ماشین ابزار تراشکاری از سوی تیم تحقیقاتی گروه مهندسی مکانیک دانشکده فنی مهندسی دانشگاه رازی به جامعه صنعتی کشور ارائه شد.
به گزارش ایسنا، مهندس علی محمد رشیدی از محققان این طرح که با همکاری علیرضا باغبانباشی و شهریار یاقوتی پور و با پشتیبانی معاونت پژوهشی دانشگاه رازی انجام شده گفت: با بهرهگیری از این روش که برای اولین بار در کشور ارائه شده میتوان سطح تخت (دهانه فک) گیره های صنعتی را با استفاده از ماشین تراش معمولی (ماشین ابزار گردتراش) با طراحی قید و بستها و قلمگیر مناسب آج زنی کرد.
وی خاطرنشان کرد: طی آج زنی یک سری فرورفتگی و برجستگی به فرم لوزی بر روی سطوح قطعات به منظور افزایش قابلیت گیرایی سطوح و زیبایی آنها ایجاد میشود.
آجهای ایجاد شده در فرایند جدید بر خلاف آج زنی با صفحه تراش که به صورت خطوط مستقیم متقاطع هستند، به فرم قوسهای متقاطع میباشند. در روش جدید هم سرعت آج زنی سطوح تخت بسیار بیشتر از روش آج زنی با صفحه تراش است وهم گیرایی فکها در تمامی جهات یکسان است.
طی تحقیق انجام شده چگونگی انجام فرایند تشریح شده و این فرایند با استفاده از یک نرمافزار رایانهیی شبیهسازی شده و به کمک آن اثر پارامترهای موثر مانند سرعت چرخش محور، سرعت پیشروی قلم، محل نصب آن، ابعاد قابل آج زنی و … بررسی و مقادیر بهینه تعیین شدهاند.
معرفی ماشینکاری با جت آب و مواد ساینده معرفی ماشینکاری با جت آب و مواد ساینده
Abrasive and Water Jet Machining: Introduction
اگرچه سالهاست که از استفاده از تکنولوژی جت مواد ساینده و جت آب میگذرد و لیکن اخیراً این دو فرآیند در زمینه بازار ماشنی ابزار جایگاه مناسبی پیدا کرده است. این موضوع مهم و قابل توجه است و تعدادی از نوآورن قدیمی با استفاده از جایگزینی و تکمیل فرآیندهای معمولی ماشینکاری خود با استفاده از این دو فرآیند (ماشینکاری با جتآب و جت مواد ساینده) سود فراوانی بردهاند.
اخیراً بر طبق گزارش Frost و Sullivan که یک شرکت بازاریابی کار میکنند، اعلام نمودهاند که
abrasive waterjet به نحو چشمگیری رشد و گسترش قابل ملاحظهای پیدا کرده است. رشد ۱/۹ درصد در فاصله سالهای ۲۰۰۲-۱۹۹۷ برای بازار واترجت و جت مواد آینده پیشبینی میشود.
هم واترجت و هم لیزر قادرند فلزات و دیگر مواد را برش دهند. ولیکن دستگاههای واترجت ارزانتر از دستگاههای لیزر میباشند و عملاً دستگاههای واترجت برتر از ماشینهای برش معمولی میباشند.
چرا تعداد زیادی از مردم به خرید دستگاههای واترجت روی آوردهاند، زیرا: چون میتوانند سریع برنامهریزی کرده و در مدت کوتاهی پولدار شده و سود زیادی عایدشان شود. همچنین میتوانند سریعاً دستگاه را تنظیم کرده و کل مجموعه تنظیمات دستگاه را تنظیم کرده و کل مجموعه تنظیمات دستگاه را چک کنند آنها از ابزار دستگاه خیلی تعریف میکنند. چونکه ابزار، هم در
ماشینکاری اولیه و هم در ماشینکاری ثانویه (نهایی) یکی است و نیازی به تغییر ابزار نمیشود. سرعت ساخت قطعات بسیار بالا و خارج از تصور میباشد. این روش باعث ایجاد اثرات حرارتی روی قطعه نمیشود. آنها میتوانند هزینه خرید دستگاه را در مدت کوتاهی تامین نمایند. شما قبلاً عبارات واترجت و جت مواد ساینده را شنیدهاید، این مهم است که بدانید جهت مواد ساینده همان واترجت نمیباشد، اگرچه خیلی به هم شبیه هستند. تکنولوژی جتآب به حدود ۲۰ سال پیش برمیگردد و جت مواد ساینده حدوداً ۱۰ سال بعد به وجود آمد. اساس هر دو روش مبتنی بر
افزایش فشار آب تا حد خیلی زیاد و خروج آب از یک روزنه کوچک به خارج میباشد. سیستم واترجت از یک باریکه آب استفاده میکند که از دهانه (orifice) خارج میشود و میتواند مواد نرمی از قبیل پارچه و مقوا را برش دهد و لیکن نمیتواند مواد سختتری را برشکاری کند. آب در دهانه ورودی از ۲۰ تا ۵۵ هزار پوند بر اینچ مربع تحت فشار قرار میگیرد، سپس از دهانه (jewel) که قطر آن به طور نمونه ۰۱۵/۰-۰۱۰/۰ اینچ میباشد. با فشار خارج میشود و در سیستم جت مواد ساینده، مواد ساینده به جتآب افزوده شده تا بتواند مواد سختتر را نیز برش دهد. سرعت خی
لی زیاد جت آب باعث ایجاد خلاء شده و مواد ساینده را به داخل نازل مکش میکند. اغلب مردم زمانی که منظورشان جت ساینده است، به غلط اصطلاح واترجت را به کار میبرند. یک مجموعه کامل نازل واترجت حدود ۵۰۰ تا ۱۰۰۰ دلار میباشد در صورتی که نازل جت سازنده حدود ۸۰۰ تا ۲۰۰۰ دلار هزینه در بر دارد. هزینه عملیاتی جت مواد ساینده به خاطر سایش تیوپ مخلوطکننده مواد ساینده با آب و همچنین به خاطر مصرف مواد ساینده نسبت به واترجت خیلی زیاد است.
تنها محدودیت جتآب نازلهای آن میباشد و jewel دارای سوراخ بسیار ریزی بوده که آب با فشار از آن به بیرون پاشیده میشود. Jewel ممکن است ترک برداشته و یا در اثر رسوب در آن مسدود شدن دهانه یاقوتی نازل در اثر ورود مواد زائد و گرد و کثافت در دهانه ورودی آب (inlet water) میباشد و میتوان براحتی و با استفاده از یک فیلتراسیون مناسب از بروز چنین مواردی جلوگیری نمود. رسوبات در اثر مواد معدنی موجود در آب نیز ممکن است پدید آید. Jewelها را میتوان در مدت کوتاهی حدود ۲ تا ۱۰ دقیقه تعویض نمود. همچنین قیمت بالایی نداشته و حدود ۵ تا ۵۰ دلار میباشد، البته نازلهای الماسه نیز وجود دارند ولیکن قیمت آنها حدود ۲۰۰ دلار میباشد و همچنین ساخت آنها نیز مشکلتر از نازلهای یاقوتی میباشد. ابعاد و شکل هندسی دهانه نازل در نحوه عملکرد آن تاثیر بسیار مهمی داشته و در مورد نازلهای الماسی تامین این دقت و تلرانس کمی مشکل و هزینهبر میباشد.
محدودیتهای موجود در مورد نازلهای مربوط به جت مواد ساینده
نازلهای جت مواد ساینده علاوه بر طرح سادهای که دارند گاهگاهی ایجاد مشکلاتی نیز میکنند. طرحهای گوناگونی ساخته شدهاند ولی همگی در بروز یکسری مشکلات مشترک هستند.
تیوپ مخلوطکننده یک قطعه و مجموعه گرانقیمت بوده و به علت سایش در اثر مواد ساینده دارای عمر کوتاهی نیز میباشد. همانطوری که گفته شد، جت مواد ساینده قادر است هر چیزی را برش دهد و این توانایی بالایی فرسایش و در نتیچه آن برش مسیر عبور و تیوپ مخلوطکننده را نیز تحت تاثیر قرار میدهد و همین مسئله در افزایش قیمت نهایی قطعه تولیدی تاثیر میگذارد.
از دیگر مشکلات موجود در مورد دستگاههای جت مواد ساینده این است که تیوپ مخلوطکننده به همیشه بلکه گاهگاهی مسدود میشود. معمولاً علت این امر در اثر مواد زاید و کثیف (dirt) و همچنین دانههای مواد ساینده که از اندازه استاندارد بزرگتر باشند نیز حاصل میشود.
مزایای ماشینکاری با جت مواد ساینده
برنامهریزی و تنظیم فوقالعاده سریع
در این فرآیند نیازی به تغییر ابزار جهت کارهای مختلف نمیباشد، برعکس دیگر دستگاههای ماشینکاری که حتی برای تعویض ابزار نیر باید برای دستگاه برنامهریزی کرد. تنها برنامهریزی لازم برای انجام عملیات ارائه نقشه قطعه به دستگاه میباشد و اگر مشتری نقشه قطعه کار را روی یک دیسکت به شما تحویل دهد، نصف کار انجام شده است و این به این معنی است که شما در تولیدات کم و حتی تکسازی هم میتوانید سود قابل توجهی ببرید.
برای اغلب کارها نیاز به فیکسچر خیلی کمی نیاز است:
برای مواد تخت میتوان پس از قرار دادن آنها روی میزکار با قراردادن دو وزنه ۱۰ پوندی روی آن قطعه کار را فیکس نمود و برای قطعات کوچک میتواند با استفاده از رویندهای کوچک، کار را محکم نمود.
امکان ماشینکاری تقریباً هر قطعه (شکل) دو بعدی و برخی از قطعات (اشکال) سه بعدی
امکان ماشینکاری شعاعها و گوشههای داخلی با شعاع کم، امکان ساخت فلانج کاربراتور با سوراخها و همه چیزهای لازم آن. برخی از دستگاههای فوقالعاده پیشرفته قادر به ماشینکاری سه بعدی میباشند. ماشینکاری سه بعدی نیازمند و مستلزم دقت زیادی میباشد. به همین دلیل ماشینکاری سه بعدی صرفاً جهت کاربردهای خاص به کار میرود.
به هر حال ماشینکاری جت مواد ساینده دارای توانمندی فوقالعاده در تولید اشکال دو بعدی است و لیکن در مورد اشکال سه بعدی دارای محدودیتهایی میباشد.
اعمال نیروی جانبی بسیار کم به قطعه حین ماشینکاری
بدین معنی که شما میتوانید با اطمینان قطعاتی که ضخامت دیواره آنها به کوچکی ۰۰۲۵/۰ اینچ باشد را به راحتی و بدون ترکیدگی و یا حتی لبپریدگی، ماشینکاری کنید. همچنین پایین بودن زیاد میزان نیروی جانبی برش این امکان را فراهم میکند تا بتوان اشکال لانه زنبوری و تو در تو تولید نموده و با این کار را از متریال حداکثر استفاده را کرد.
اغلب هیچ گونه گرمایی روی قطعه کار ایجاد نمیشود:
شما میتوانید قطعه کار را ماشینکاری کنید. بدون ایجاد افزایش دما و سخت شدن قطعه کار و بدون تولید دودهای سمی، بدون ایجاد پیچیدگی در قطعه کار، و بدون تولید دودهای سمی، و بدون ایجاد پیچیدگی در قطعه کار.
شما میتوانید قطعاتی را که قبلاً سختکاری شدهاند و عملیات حرارتی بر روی آنها انجام شده است را به راحتی ماشینکاری کنید. در ایجاد سوراخ بر روی فولاد به ضخامت ۲ اینچ حداکثر دمای قطعه کار به ۱۲۰ درجه فارنهایت میرسد و لیکن ماشینکاری بر روی دیگر قطعات در دمای اتاق انجام میشود.
نیازی به ایجاد سوراخ اولیه نمیشود:
بر خلاف ماشینکاری با وایرکات که نیاز به ایجاد سوراخ اولیه میباشد در این روش نیازی به ایجاد سوراخ اولیه نمیباشد.
موضوع ضخامت قطعهکار
محدودیت مشخصی برای ضخامت معلوم نمیباشد و لیکن سرعت برش تابعی از ضخامت قطعه کار میباشد.
عدم آسیبرسانی به محیط
شما میتوانید از مواد ساییده شده قرمز رنگ که از garnet بجای مانده است جهت تزئین باغچه استفاده کنید حتی اگر شما میخواهید قطعات زیادی از جنس مواد خطرناک از قبیل سرب و … را ماشینکاری کنید، این مهم است که مقدار خیلی کمی از ماده برداشته میشود. این خود در حفاظت محیطزیست موثر است.
باقی مانده مواد خام نیز قابل استفاده است
هنگام ماشینکاری قطعات گرانقیمت از قبیل تییانیوم، باقی مانده ماده خام نیز ارزشمند است زیر عرض برش این فرآیند کوچک بوده و پس از تولید قطعه اصلی، میتوان از مواد باقی مانده مجدداً قطعات دیگری تولید نمود.
تنها و تنها فقط به یک ابزار نیاز است
در این روش نیازی به تغییر ابزار نمیباشد و حتی نیازی به برنامهریزی جهت تغییر ابزار نمیباشد. برنامهریزی و تنظیم دستگاه و تمیز کردن نیز زمان زیادی نمیبرد، از این رو در این روش سرعت تولید و بهرهوری خیلی زیاد است.
افسانهها و موهومات معمول در مورد جت مواد ساینده
اوه! شما میتوانید فولاد به ضخامت ۶ اینچ را با آب ببرید!؟
خیر! اگر شما مشاهده میکنید که یک قطعه فولادی به ضخامت ۶ اینچ در حال برشکاری است، بدانید که این واترجت نیست بلکه جت مواد ساینده است که این کار را انجام میدهد. وظیفه آب در اینجا فقط اعمال شتاب فوقالعاده زیاد بر مواد ساینده است. و این مواد ساینده است که فولاد را میبرد، نه آب!
عمر نازل برشکاری
به اشتباه خیال میشود که عمر نازل خیلی مهم و حساس است و این در حالی است که عمر قسمت نازل دستگاه اهمیت آن چنانی ندارد و آنچه که مهم است عمر تیوپ مخلوطکننده مواد ساینده با آب است.
Orifice یا jewelها ارزان هستند و اصلاً قابل قیاس با تیوپ اختلاط نمیباشد. Jewelها (قسمت نازل یا دهانه خروجی آب است که از جنس لعل یا یاقوت میباشد) تقریباً ارزان و حدود ۱۵ تا ۵۰ دلار میباشند و این در حالی است که قیمت تیوپ مخلوطکننده ۱۰۰ تا ۲۰۰ دلار میباشد. Jewelها نوعاً در اثر رسوبات معدنی موجود در آب آسیب میبینند که البته این رسوبات قابل برداشت میباشند. Jewel از جنس یاقوت قرمز و آبی تقریباً یکسان هستند و تفاوتشان فقط در رنگشان است. علت رنگ قرمز rubyها به علت درصد بالای کرم موجود در آنها بوده و در مقابل
sapphireها علت رنگ آبی، درصد بالای آهن موجود در آنها است ولیکن هر دو سنگ یاقوت معدنی میباشند. اما اگر هنوز عمر مفید نازل برای شما خیلی مهم است میتوانید بجای نازل از جنس یاقوت قرمز یا آبی، از نازل الماسه استفاده کنید ولی بهتر است فعلاً از یک سامانه مناسب فیلتراسیون آب استفاده کنید.
منبع http://magirans.com